Face Verification Advances Using Spatial Dimension Reduction Methods: 2DPCA & SVM
نویسندگان
چکیده
Spatial dimension reduction called Two Dimensional PCA method has recently been presented. The application of this variation of traditional PCA considers images as 2D matrices instead of 1D vectors as other dimension reduction methods have been using. The application of these advances to verification techniques, using SVM as classification algorithm, is here shown. The simulation has been performed over a complete facial images database called FRAV2D that contains different sets of images to measure the improvements on several difficulties such as rotations, illumination problems, gestures or occlusion. The new method endowed with a classification strategy of SVMs, seriously improves the results achieved by the traditional classification of PCA & SVM.
منابع مشابه
Comparing and Combining Spatial Dimension Reduction Methods in Face Verification
The problem of high dimensionality in face verification tasks has recently been simplified by the use of underlying spatial structures as proposed in the 2DPCA, 2DLDA and CSA methods. Fusion techniques at both levels, feature extraction and matching score, have been developed to join the information obtained and achieve better results in verification process. The application of these advances t...
متن کاملFace Recognition Stationed on DT-CWT and Improved 2DPCA employing SVM Classifier
Wavelet Transform is basically used for magnitude depletion. It is used for axing the proportion of picture. Including good multi-resolution and multi-scale analysis, wavelet transform also has the propensity of denoting local signal attribute by using the high and low pass filtering, image can be decomposed into divergent scales of approximation components. But in wavelet transform, the higher...
متن کاملComparison of Novel Dimension Reduction Methods in Face Verification
The problem of high dimensionality in face verification tasks has recently been simplified by the use of underlying spatial structures as proposed in the Two Dimensional Principal Component Analysis, the Two Dimensional Linear Discriminant Analysis and the Coupled Subspaces Analysis. Besides, the Small Sample Size problem that caused serious difficulties in traditional LDA has been overcome by ...
متن کاملA Face Identification Algorithm using Two Dimensional Principal Component Analysis Based on Wavelet Transform
Abstract— Face is the most common biometric used by humans, its applications range from static, mug-shot verification to a dynamic, uncontrolled face identification in a cluttered background. The main objective of this paper is to construct an effective human face identification system. The presented algorithm combines the scaling process, histogram equalization process, wavelet transform proce...
متن کاملFace Recognition Based on SVM and 2DPCA
The paper will present a novel approach for solving face recognition problem. Our method combines 2D Principal Component Analysis (2DPCA), one of the prominent methods for extracting feature vectors, and Support Vector Machine (SVM), the most powerful discriminative method for classification. Experiments based on proposed method have been conducted on two public data sets FERET and AT&T; the re...
متن کامل